Package: eclust 0.1.0

eclust: Environment Based Clustering for Interpretable Predictive Models in High Dimensional Data

Companion package to the paper: An analytic approach for interpretable predictive models in high dimensional data, in the presence of interactions with exposures. Bhatnagar, Yang, Khundrakpam, Evans, Blanchette, Bouchard, Greenwood (2017) <doi:10.1101/102475>. This package includes an algorithm for clustering high dimensional data that can be affected by an environmental factor.

Authors:Sahir Rai Bhatnagar [aut, cre]

eclust_0.1.0.tar.gz
eclust_0.1.0.zip(r-4.5)eclust_0.1.0.zip(r-4.4)eclust_0.1.0.zip(r-4.3)
eclust_0.1.0.tgz(r-4.4-any)eclust_0.1.0.tgz(r-4.3-any)
eclust_0.1.0.tar.gz(r-4.5-noble)eclust_0.1.0.tar.gz(r-4.4-noble)
eclust_0.1.0.tgz(r-4.4-emscripten)eclust_0.1.0.tgz(r-4.3-emscripten)
eclust.pdf |eclust.html
eclust/json (API)
NEWS

# Install 'eclust' in R:
install.packages('eclust', repos = c('https://sahirbhatnagar.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/sahirbhatnagar/eclust/issues

Datasets:
  • simdata - Simulated Data with Environment Dependent Correlations
  • tcgaov - Subset of TCGA mRNA Ovarian serous cystadenocarcinoma data

On CRAN:

4.15 score 2 stars 14 scripts 244 downloads 15 exports 142 dependencies

Last updated 7 years agofrom:b75d4275dc. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 29 2024
R-4.5-winNOTEOct 29 2024
R-4.5-linuxNOTEOct 29 2024
R-4.4-winNOTEOct 29 2024
R-4.4-macNOTEOct 29 2024
R-4.3-winNOTEOct 29 2024
R-4.3-macNOTEOct 29 2024

Exports:r_cluster_datar_prepare_datas_generate_datas_generate_data_marss_mars_clusts_mars_separates_moduless_pen_clusts_pen_separates_responses_response_marsu_cluster_similarityu_extract_selected_earthu_extract_summaryu_fisherZ

Dependencies:AnnotationDbiaskpassbackportsbase64encBiobaseBiocGenericsBiostringsbitbit64blobbslibcachemcaretcheckmateclasscliclockclustercodetoolscolorspacecpp11crayoncurldata.tableDBIdiagramdigestdoParalleldplyrdynamicTreeCute1071evaluatefansifarverfastclusterfastmapfontawesomeforeachforeignFormulafsfuturefuture.applygenericsGenomeInfoDbGenomeInfoDbDataggplot2globalsglueGO.dbgowergridExtragtablehardhathighrHmischtmlTablehtmltoolshtmlwidgetshttrimputeipredIRangesisobanditeratorsjquerylibjsonliteKEGGRESTKernSmoothknitrlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmatrixStatsmemoisemgcvmimeModelMetricsmunsellnlmennetnumDerivopensslpacmanpanderparallellypillarpkgconfigplogrplyrpngpreprocessCorepROCprodlimprogressrproxypurrrR6rappdirsRColorBrewerRcpprecipesremotesreshape2rlangrmarkdownrpartRSQLiterstudioapiS4VectorssassscalesshapeSQUAREMstringistringrsurvivalsystibbletidyrtidyselecttimechangetimeDatetinytextzdbUCSC.utilsutf8vctrsviridisviridisLiteWGCNAwithrxfunXVectoryamlzlibbioc

Introduction to eclust

Rendered fromeclust.Rmdusingknitr::rmarkdownon Oct 29 2024.

Last update: 2017-01-25
Started: 2016-09-20