casebase - Fitting Flexible Smooth-in-Time Hazards and Risk Functions via Logistic and Multinomial Regression
Fit flexible and fully parametric hazard regression models to survival data with single event type or multiple competing causes via logistic and multinomial regression. Our formulation allows for arbitrary functional forms of time and its interactions with other predictors for time-dependent hazards and hazard ratios. From the fitted hazard model, we provide functions to readily calculate and plot cumulative incidence and survival curves for a given covariate profile. This approach accommodates any log-linear hazard function of prognostic time, treatment, and covariates, and readily allows for non-proportionality. We also provide a plot method for visualizing incidence density via population time plots. Based on the case-base sampling approach of Hanley and Miettinen (2009) <DOI:10.2202/1557-4679.1125>, Saarela and Arjas (2015) <DOI:10.1111/sjos.12125>, and Saarela (2015) <DOI:10.1007/s10985-015-9352-x>.
Last updated 6 months ago
competing-riskscox-regressionregression-modelssurvival-analysis
7.09 score 9 stars 94 scripts 1.0k downloadseclust - Environment Based Clustering for Interpretable Predictive Models in High Dimensional Data
Companion package to the paper: An analytic approach for interpretable predictive models in high dimensional data, in the presence of interactions with exposures. Bhatnagar, Yang, Khundrakpam, Evans, Blanchette, Bouchard, Greenwood (2017) <DOI:10.1101/102475>. This package includes an algorithm for clustering high dimensional data that can be affected by an environmental factor.
Last updated 8 years ago
4.62 score 2 stars 14 scripts 296 downloads