Package: ggmix 0.0.2

ggmix: Variable Selection in Linear Mixed Models for SNP Data

Fit penalized multivariable linear mixed models with a single random effect to control for population structure in genetic association studies. The goal is to simultaneously fit many genetic variants at the same time, in order to select markers that are independently associated with the response. Can also handle prior annotation information, for example, rare variants, in the form of variable weights. For more information, see the website below and the accompanying paper: Bhatnagar et al., "Simultaneous SNP selection and adjustment for population structure in high dimensional prediction models", 2020, <doi:10.1371/journal.pgen.1008766>.

Authors:Sahir Bhatnagar [aut, cre], Karim Oualkacha [aut], Yi Yang [aut], Celia Greenwood [aut]

ggmix_0.0.2.tar.gz
ggmix_0.0.2.zip(r-4.5)ggmix_0.0.2.zip(r-4.4)ggmix_0.0.2.zip(r-4.3)
ggmix_0.0.2.tgz(r-4.4-any)ggmix_0.0.2.tgz(r-4.3-any)
ggmix_0.0.2.tar.gz(r-4.5-noble)ggmix_0.0.2.tar.gz(r-4.4-noble)
ggmix_0.0.2.tgz(r-4.4-emscripten)ggmix_0.0.2.tgz(r-4.3-emscripten)
ggmix.pdf |ggmix.html
ggmix/json (API)
NEWS

# Install 'ggmix' in R:
install.packages('ggmix', repos = c('https://sahirbhatnagar.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/sahirbhatnagar/ggmix/issues

Datasets:
  • admixed - Simulated Dataset with 1D Geography
  • karim - Karim's Simulated Data

On CRAN:

5.48 score 10 stars 20 scripts 151 downloads 1 mentions 5 exports 11 dependencies

Last updated 4 years agofrom:eb1c8a71dd. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 05 2024
R-4.5-winOKNov 05 2024
R-4.5-linuxOKNov 05 2024
R-4.4-winOKNov 05 2024
R-4.4-macOKNov 05 2024
R-4.3-winOKNov 05 2024
R-4.3-macOKNov 05 2024

Exports:gen_structured_modelggmixgicrandom.effectsranef

Dependencies:codetoolsforeachglmnetiteratorslatticeMASSMatrixRcppRcppEigenshapesurvival

Alternative Inputs for Population Structure

Rendered fromalternative-kinship-input.Rmdusingknitr::rmarkdownon Nov 05 2024.

Last update: 2020-03-09
Started: 2018-06-28

Incorporating Prior Annotation Weights

Rendered fromprior-annotation-weights.Rmdusingknitr::rmarkdownon Nov 05 2024.

Last update: 2020-03-09
Started: 2018-06-28

Introduction to the ggmix package

Rendered fromintroduction-to-ggmix.Rmdusingknitr::rmarkdownon Nov 05 2024.

Last update: 2020-03-09
Started: 2018-06-28

Readme and manuals

Help Manual

Help pageTopics
Simulated Dataset with 1D Geographyadmixed
Simulation Scenario from Bhatnagar et al. (2018+) ggmix papergen_structured_model
Fit Linear Mixed Model with Lasso or Group Lasso Regularizationggmix
Constructor functions for the different ggmix objectsggmix_data_object new_fullrank_K new_fullrank_kinship new_fullrank_UD new_lowrank_K new_lowrank_kinship new_lowrank_UD
Generalised Information Criteriongic gic.default gic.ggmix_fit
Functions related to eta parameter used in optim and kkt checksfn_eta_lasso_fullrank gr_eta_lasso_fullrank
Karim's Simulated Datakarim
Check of KKT Conditions for Linear Mixed Modelgrr_beta0 grr_sigma2 kkt_check
Estimation of Lambda Sequence for Linear Mixed Model with Lasso Penaltylambdalasso lambdalasso.default lambdalasso.fullrank
Estimation of Linear Mixed Model with Lasso Penaltylmmlasso lmmlasso.default lmmlasso.fullrank
Estimation of Log-likelihood for Linear Mixed Model with Lasso Penaltylogliklasso logliklasso.default logliklasso.fullrank
Plot Method for 'ggmix_fit' objectplot.ggmix_fit plotCoef
Plot the Generalised Information Criteria curve produced by 'gic'plot.ggmix_gic plotGIC
Make predictions from a 'ggmix_fit' objectcoef.ggmix_fit predict.ggmix_fit
Make predictions from a 'ggmix_gic' objectcoef.ggmix_gic predict.ggmix_gic
Print Method for Objects of Class 'ggmix_fit'print.ggmix_fit print.ggmix_gic
Extract Random Effectsrandom.effects random.effects.default ranef ranef.default ranef.ggmix_gic
Estimation of Sigma2 for Linear Mixed Model with Lasso Penaltysigma2lasso sigma2lasso.default sigma2lasso.fullrank